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The explosive growth in medical devices, imaging and diagnostics, computing, and

communication and information technologies in drug development and healthcare

has created an ever-expanding data landscape that the pharmacometrics (PMX)

research community must now traverse. The tools of machine learning (ML) have

emerged as a powerful computational approach in other data-rich disciplines but its

effective utilization in the pharmaceutical sciences and PMX modelling is in its

infancy. ML-based methods can complement PMX modelling by enabling the infor-

mation in diverse sources of big data, e.g. population-based public databases and

disease-specific clinical registries, to be harnessed because they are capable of effi-

ciently identifying salient variables associated with outcomes and delineating their

interdependencies. ML algorithms are computationally efficient, have strong predic-

tive capabilities and can enable learning in the big data setting. ML algorithms can be

viewed as providing a computational bridge from big data to complement PMX

modelling. This review provides an overview of the strengths and weaknesses of ML

approaches vis-à-vis population methods, assesses current research into ML applica-

tions in the pharmaceutical sciences and provides perspective for potential opportu-

nities and strategies for the successful integration and utilization of ML in PMX.
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1 | UNMET RESEARCH CHALLENGES AND
OPPORTUNITIES IN PHARMACOMETRICS

Pharmacometrics (PMX) is defined by the US Food and Drug Adminis-

tration (FDA) as “the science that quantifies drug, disease and trial infor-

mation to aid efficient drug development and/or regulatory decisions”.1 A
wide range of quantitative techniques are used in drug development

and can be considered under the PMX umbrella.

The explosive increase in new technologies and data throughout

drug discovery and development has created challenges and oppor-

tunities for PMX. There is now an unmet need for innovative quan-

titative PMX methods that can provide insight and knowledge from

the new data to accelerate and enhance drug development. There

is great interest in integrating modelling and simulation, machine

learning (ML) and artificial intelligence (AI) to leverage the increasing

availability of big data to improve patients' outcomes to drug

therapy.

In principle, ML and AI act as a bridge (Figure 1) between big data

and pharmacometrics. ML provides computationally efficient

approaches capable of processing big data that have powerful predic-

tion and learning capabilities. ML can therefore be leveraged to handle

the large sample sizes of big data to enable learning, hypothesis gen-

eration and model building. Integration of high-quality big data

through ML and AI can supplement the smaller sample sizes used in

PMX modelling and expand its parameter inference capabilities. In this

review, we will critically investigate the utility of incorporating ML

techniques in PMX for improving personalized medicine and drug

development.
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2 | PHARMACOKINETIC AND
PHARMACODYNAMIC MODELLING

Pharmacokinetic (PK) and pharmacodynamic (PD) modelling is the

benchmark approach in the preclinical stages of drug development for

describing time courses of drug concentrations and effects, interspe-

cies scaling, and dose determination. PK/PD modelling relies primarily

on compartmental models that are described through closed form

algebraic solutions and/or systems of ordinary differential equations

(ODEs). The ODEs are built on mass balance and information flow

considerations that can be expressed in state–space form, which

enables output noise to be incorporated.

Parameter estimation in PK/PD and population PK/PD modelling

involves selection and subsequent optimization of an objective func-

tion that assesses the goodness-of-fit of the values from the proposed

statistical model to the data. Examples of such objective functions

include least squares, weighted least squares and log-likelihood

functions. Maximum likelihood estimation (MLE, which minimizes

the negative of the log-likelihood objective function) is the most

widely used approach for obtaining system parameters in PK/PD

modelling.2–5

Building PK/PD models is an iterative, empirically guided process

that uses the qualitative features of time profiles, while also relying on

principles of pharmacology and physiology to quantitatively represent

the system. The complexity of these models is reduced to ensure

parameter identifiability and the model selection process involves

using measures of parsimony (e.g. Akaike information or AIC, Bayesian

information criterion or BIC).

Data-driven metrics are also used as descriptors of PK time

profiles in drug development. The mathematical framework in

non-compartmental analysis (NCA) is the estimation of the statistical

moments of the time profiles. NCA is typically used to assess bioavail-

ability and bioequivalence.

Physiologically based PK (PBPK) models are anatomically based

compartmental PK/PD models whose intercompartmental connectiv-

ity is based on physiological blood flow between organs. Because of

their increased complexity, the majority of the system-specific param-

eters in PBPK models are fixed to physiological values to enable iden-

tification of the drug-relevant parameters of interest.6–8 PBPK

modelling can be viewed as a modelling platform and has found a use-

ful niche for modelling antibody drugs.9

3 | POPULATION PK/PD

Population PK/PD is the most widely used approach for modelling

PK/PD data from human studies.2–5 The FDA provides a roadmap for

population PK analyses in new drug applications and biologics license

applications.10 In PMX, population PK/PD is the key approach for

enabling dose individualization and personalized medicine in the clini-

cal setting. Population PK/PD is useful for modelling of sparse data

sets and for integrating information from multiple studies.11,12

Nonlinear mixed effects (NLME) modelling provides a more ele-

gant population modelling statistical framework by characterizing indi-

vidual level data as a population.13 NLME methods provide individual

and population parameter estimates, and parse the interoccasion,

interindividual (IIV) and residual components of variability. Calculating

the NLME objective function is computationally intensive because the

likelihood for each subject has to be integrated over parameter space

during the optimization.3

F IGURE 1 Machine learning (ML) is represented as the computational bridge between big data and pharmacometrics. The strengths and
weaknesses of each area is shown in the text. Big data requires computationally efficient methods but enables learning. Because of the larger
sample size of big data, the impact of sampling noise is reduced, better assessments of variability are obtained and it is more likely to contain
indicators of low frequency and rare events. Integration of representative and high-quality big data with pharmacometric modelling via ML could
provide insights into drug effects in diverse populations and in racial and ethnic minority groups. The high dimensionality of big data could enable
consideration of a range of demographic, clinical, laboratory, environmental and genetic factors that contribute to drug outcomes. ML methods
have strong generalizability and predictive capabilities and the integration of big data through ML could complement the pharmacologically
informative findings and parameter inference capabilities from pharmacometric modelling, which typically have smaller sample sizes
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4 | QUANTITATIVE SYSTEMS
PHARMACOLOGY MODELLING

Vertically integrating PK/PD time profiles and clinical outcomes with

the multitude of DNA, mRNA, protein and metabolite biomarkers and

the corresponding biological pathways to construct multiscale system

models has proven difficult.14–16

In PMX, the main strategy to overcome these challenges has been

to re-purpose ODE-based compartmental models as quantitative sys-

tems pharmacology (QSP) models. QSP models are built by combining

systems biology networks and pharmacodynamics modelling.17 QSP

models can have hundreds of compartments representing DNA,

mRNA, protein and metabolite levels that are interconnected based

on pharmacological knowledge of the activation and inhibition pat-

terns that occur in signalling pathways of interest. QSP models are

built with the goal of elucidating interactions between drug action,

signalling pathways and the effector mechanisms.16 QSP models

require definition of a relevant biological network that defines inter-

connectivity of variables in the system and the corresponding pharma-

cologically relevant activation and inhibition relationships. QSP model

building is subjective and requires expert insight to define the scope

of biology and pharmacology. The quantitative behaviour of the net-

work is assessed by using numerical methods such as Boolean

networks,18 agent-based models19 or systems of ODE.20 QSP models

with high complexity are often pruned using heuristic approaches to

reduce the variables in the system, and many parameters are fixed by

the modeler. Connecting the model to clinical outcomes often

requires link functions. QSP models have found utility as a mechanis-

tic approach to qualitatively assess drug targeting, toxicity predictions

and hypothesis generation in discovery and preclinical studies for

drugs that target numerous interacting signalling pathways.

Despite the success of NLME in population PK/PD modelling, it has

proven difficult to extend and translate that success to characterize indi-

vidual and population profiles in larger pharmacological systems and to

QSP models. While the computational resources needed for integration

and optimization in NLME are indeed extensive, it is the underlying

process of model development, which is highly dependent on human

intervention and trial-and-error, that substantially limits the extension of

NLME to, and utility for large complex systems modelling applications.

Human intervention is critical and indispensable for evaluating the

results from both small and large models. However, manually building

complex yet parsimonious models that synthesize knowledge from mul-

tidimensional data sets is particularly challenging. QSP-based models

take a bottom-up approach by using user-selected biochemical net-

works and pharmacological activation patterns for horizontal integration.

However, vertical integration to higher-order pathological outcomes,

generalizability of networks between tissues and to disease-states and

parsimony and parameter estimation remain unresolved issues. Popula-

tion modelling methods cannot currently be used in the QSP modelling

setting despite the availability of rich data sets that could potentially

enable integrated modelling across both modelling modalities. There is

an unmet need for innovative PMX methods that can bridge the chasm

between population PK/PD and QSP models.21

5 | MACHINE LEARNING AND PMX:
OPPORTUNITIES, APPLICATIONS AND
CHALLENGES

Advances in engineering and in computing hardware and software have

had a transformative effect on pharmaceutical sciences and clinical

research from the bench to the bedside. Massive amounts of data are

being generated in the drug development setting due to advances in in

silico chemical discovery and property prediction, high-throughput syn-

thesis and screening, and bioanalytical methods including whole genome

DNA sequencing, RNASeq, single molecular array assays and array-

based mRNA expression profiling and mass spectrometric methods for

small molecule quantitation, proteomics, methylation profiling and met-

abolomics. There has been concomitant impact of the explosive growth

in medical devices, computing, communication and information technol-

ogies on healthcare. This has enabled new diagnostic tools, imaging

techniques, electronic health records, telemedicine and digital medicine.

These developments have created an ever-expanding data landscape

that the PMX research must navigate.22

There is increasing interest in expanding the scope of PMX to inte-

grate the rapidly growing clinical and biomedical datasets and the need

for novel quantitative modelling techniques capable of learning across

all areas of drug development.23 Several recent reviews have

attempted to provide a specific rationale for incorporating ML in

population PK/PD modelling.24–27 A consortium called Accelerating

Therapeutics for Opportunities in Medicine (ATOM, https://

atomscience.org) was funded by Cancer Moonshot programme of the

federal government in 2016 to harness the potential of ML for drug

discovery. ATOM involves the pharmaceutical company GSK, Lawrence

Livermore National Laboratory of the Department of Defense,

Frederick National Laboratory of the National Cancer Institute and the

University of California, San Francisco. Its goal is to develop shared,

publicly available tools for drug discovery. ATOM has developed an

AI-based cheminformatics platform called ATOM Modeling Pipeline to

historical drug discovery data on 500 failed GSK drugs, bioassay data

and molecular properties.28 The adaptation, integration and application

of big data and ML in PMX has yet to reach fruition.

In the following sections, we provide an overview of ML tech-

niques and critically assess the strengths and weaknesses of ML

methods for drug development and PMX applications. The scope of

the survey does not include extensive introduction and training in the

science behind ML/AI given THAT there are numerous resources in

textbooks and online tutorials.

6 | SURVEY OF ML METHODS

6.1 | Learning and ML

When large volumes of data are available, computer algorithms that

are capable of learning become a natural and more powerful choice.

As defined by Mitchell, “A computer program is said to learn from expe-

rience E with respect to some class of tasks T and performance measure
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P if its performance at tasks in T, as measured by P, improves with experi-

ence E".29 ML is an implementation of AIthat synthesizes knowledge

and enables improvement of algorithms autonomously from data.

Broadly, statistical learning involves estimating a function that defines

the relationship between inputs (referred to as independent variables

or predictors) and outputs (dependent variables, outcomes or

responses).30,31 In the context of big data, however, not all available

predictor variables will be equally useful for optimal task performance

because the set of useful or informative variables called features is

unknown and will be present among irrelevant and redundant vari-

ables. ML is a subset of AI that utilizes computer algorithms to learn

patterns from data to solve modelling problems. Feature selection

algorithms identify informative features and are employed to prepro-

cess data in ML. The main goal of ML is to identify patterns that are

generalizable and predictive whereas the focus in statistics—and sta-

tistical modelling approaches such as NLME—is to enable inference

regarding the population from sample data.32

The learning framework in ML algorithms can be categorized as

supervised, unsupervised and reinforcement learning based on the

nature and extent of feedback available for learning. Supervised learn-

ing identifies patterns from a training dataset when an outcome vari-

able is provided. Classification and regression algorithms are

supervised learning methods that relate the input variables to the

predefined, labelled classes or outcomes, respectively. Population

PK/PD modelling can be viewed as supervised learning process.

Unsupervised learning is used to discover patterns in a dataset that

does not include an outcome variable. Clustering, dimensionality

reduction and probabilistic graphical modelling are examples of

unsupervised learning methods. Reinforcement learning is an emerg-

ing ML method that is used for decision making based on systems of

rewards and penalties.

6.2 | Supervised learning

Supervised learning provides models for regression and classification

of labelled data. These models are then applied to new unlabelled data

for prediction or to categorize their class. A simple and familiar super-

vised approach is logistic regression (LR), which can be used in ML for

binary classification problems. The logistic function underlying LR

expresses the log odds ratio of the labelled binary outcome variable as

a linear combination of the input variables.33,34 Pros and cons: LR

coefficients are easily interpreted to provide assessments of feature

importance; However, LR performs poorly in the presence of high

levels of multicollinearity or if the binary classes in the data are diffi-

cult to separate with a linear boundary.

Algorithms that support both multigroup classification and regres-

sion include k-nearest neighbour (kNN), support vector machines

(SVM), artificial neural networks (ANNs), classification and regression

trees (CARTS) and naïve Bayes (NB) classifiers.

kNN is a nonparametric supervised approach commonly used for

classifying multicategorical data.35 kNN uses a lazy-learning method

that evaluates distance of the test data points to the corresponding

kNNs in the training set using a distance metric such as Euclidean,

Manhattan, cosine distances, Pearson correlation or other metrics.36

Pros and cons: kNN is a fast method; however, the kNN distance

measure can render it sensitive to data scaling and normalization.

An SVM separates multidimensional data with a linear decision

boundary or hyperplane that maximizes the margin between the deci-

sion boundary and the classified data.37 The term support vector

refers to the proximal data points that are critical for positioning the

decision boundary. Kernel SVM extends to nonlinear boundaries by

mapping the original data to a higher dimension using polynomial, sig-

moidal or radial basis functions.38 Support vector regression (SVR)

uses a margin of tolerance around a decision boundary to provide pre-

dictions of the data.39 Pros and cons: SVM can handle high dimen-

sional data (i.e. when the number of dimensions exceeds the number

of samples) well, but its performance is poor when the classes in data

overlap.

6.2.1 | ANNs

Neural networks (NNs) are a particularly powerful and versatile ML

approach whose mathematical framework is biologically inspired by

the nervous system.40–42 NNs are used for supervised learning and

have broad applications in prediction, image analysis, natural language

processing, facial recognition and autonomous vehicles.43

The quintessential NN is composed of 3 layers of nodes or neu-

rons. Each node in the input layer contains several weighted connec-

tions (arcs) to the hidden layer of nodes, which in turn connects to the

output with its weighted arcs. These arc weights are the parameters

optimized in the learning process.44 When >1 hidden layer is present,

the NN is called a deep NN. The values at each node are obtained

from the dot product of its input nodes and input weights, which are

then scaled by a bias parameter and transformed through an activa-

tion function. Deep learning techniques use deep NNs to identify a

hierarchy of features useful for the task. Pros and cons: While NNs

are a powerful tool that can describe highly nonlinear relationships,

the broader adoption of NNs in PMX has been challenging because

they can be black boxes, which can limit interpretation and extraction

of mechanistic process information.45–50

6.2.2 | Decision trees

Decision trees or CARTs, which were pioneered by Breiman,51 provide

an alternative ML approach to classification and regression problems

that differs distinctively from traditional parametric approaches of sta-

tistics. A CART is a tree graph whose leaves represent the values of

the discrete or continuous target outcome variable. The hierarchy of

nonleaf nodes in a CART contain rules that iteratively partition the

incoming values of the predictor variable along 1 of the edges until

leaf nodes are reached.51 CARTs provide the conceptual framework

for several other ML algorithms such random forest regression (RFR),

bagged and boosted decision trees, which reduce bias.
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RFR is a powerful ML tool that is composed of several hundreds

to thousands of CARTs, i.e. an ensemble or forest of trees, that are

built from randomly bagged samples of the input data.52 Although an

individual CART may be biased, an ensemble of CARTs can provide

superior classification and regression performance. Additionally, boo-

sting algorithms are methods of weighting the ensemble of CARTs to

further improve the performance of RFR.

Gradient boosted machines (GBM) are built from the training data

that iteratively combines CART while reducing a loss function with

each successive addition.53 In adaptive boosting (AdaBoost), the

weights on the training data are iteratively updated with each succes-

sive CART.54 Extreme Gradient boosting (XGBoost) is an ensemble

that uses several tools to form strong learners including CART

hyperparameter weighting, regularization and nongradient-based

optimization for loss functions.55 Pros and cons: RFR can handle both

categorical and continuous variables, conduct classification and

regression and is effective at reducing overfitting; however, the

algorithm is comparatively slow.

6.2.3 | Probabilistic supervised classifier

The NB classifier is a simple and efficient classification algorithm that

utilizes Bayes' theorem with the strong assumption (hence, the naïve

in NB) that the input variables are conditionally independent given the

class label.56,57 NB can be considered as a simplistic form of a

Bayesian network (BN). The prior probabilities for the classes and the

conditional probabilities can be set using the Bernoulli, multinomial

and Gaussian distribution to accommodate binary, discrete and con-

tinuous outcome classification, respectively.58,59 Pros and cons: NB

can be surprisingly effective and powerful for many classification

problems because it does not require traversing parameter spaces;

however, it has limitation as a regression tool.60 RFR outperforms NB.

6.3 | Unsupervised learning

Unsupervised classification encompasses a diverse range of commonly

used clustering algorithms including k-means, hierarchical clustering,

Gaussian mixture models and density-based spatial clustering of appli-

cations with noise (DBSCAN).

The k-means algorithm partitions data into k clusters. The value

of k is provided by the user and the algorithm iteratively refines the

centroid values of the k clusters until the within-cluster variance is

minimized.61 Pros and cons: the simple k-means algorithm is a special

case of the expectation maximization algorithm that performs better

when the clusters have equal variances and spherical shape. It is rela-

tively easy to implement but requires a user-provided value for k.

While there are approaches to select an appropriate value for k, this

can be a problem particularly when the data sets to be analysed are

not static.

Hierarchical clustering sequentially partitions the data into clus-

ters.62 Agglomerative and divisive clustering are 2 methods for

hierarchical clustering that organize the data by successively grouping

all individual data points or by iteratively dividing all data into smaller

clusters, respectively. The distance metrics used to group data points

in each cluster include Euclidean, Manhattan or cosine distance. Dif-

ferent clusters are grouped through complete, average or Ward's link-

age measures.44 Pros and cons: Unlike the k-means algorithm,

hierarchical clustering does not require prior information on the num-

ber of clusters as input. However, it can be difficult to determine the

appropriate number of clusters from the dendrogram used to present

hierarchical clustering results. Hierarchical clustering is also computa-

tionally intensive (because of the pairwise distance or similarity calcu-

lations needed) and sensitive to noise and outliers.

Gaussian mixture models cluster the data using a weighted sum

of distributions. MLE methods use either expectation-maximization

(EM) or maximum a posterori to train the model to find the set of

parameters for the distributions including the mean, covariance and

the weights.56,63

6.4 | Unsupervised probabilistic graphical models

Probabilistic graphical models are an unsupervised learning ML

method built on graph theory. Probabilistic graphical models represent

the joint probability distribution as a graph whose nodes represent

random variables and edges describe the interdependencies among

the random variables.

6.4.1 | BNs

In other work,64 we evaluated BNs, which are directed acyclic graphs

(DAG) that model the joint probability distribution by factorization of

all marginal and conditional distributions.65,66 BNs are constructed in

2 steps, structural learning from the data to construct the DAG and

parameter learning from the DAG.

Structural learning is typically implemented using constraint-

based, score-based, or a hybrid of the 2 methods. Constraint-based

methods rely on the notion of dependence separation (d-separation),

where 2 variables are independent when evidence from a third vari-

able breaks their association, while restricting the edges to as few as

possible in the DAG.67 In score-based algorithms, the DAG is con-

structed by iteratively adding and removing edges until an optimal

score (on e.g. BIC, mutual information) is achieved. Parameter learning

can be performed using MLE or Bayesian methods.68 Structural and

parameter learning can be applied in a training and testing model

development strategy. Pros and cons: the DAG identified by BNs can

provide a hypothesis-generation framework for exploring potential

cause-effect relationships, but there can be other DAG structures that

are equivalent in modelling the empirically observed data distribution;

however, BNs cannot model cyclic dependencies such as those cau-

sed by feedback loops and are computationally intensive.

Markov networks are undirected graphs, which can be cyclic,

whose cliques factorize the joint probability distribution.69 As in BN,
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the nodes of the Markov networks represent random variables and its

edges represent probabilistic interactions.70 Factor functions are used

to represent the interactions between random variables, and the prod-

uct of local weighted factor functions is used to represent the joint

probability distribution. Pros and cons: Markov networks allow for

more flexibility, but parameterization of the network is less intuitive

and more computationally intensive than BN.

7 | REINFORCEMENT LEARNING

Ribba et al. review reinforcement learning (RL) approaches in PMX for

precision dosing.21 The underlying framework of RL is based on

Markov decision processes and it is closely related to optimal control

theory. The objective in RL is to maximize the value function to a con-

troller or agent that exerts actions to steer the state of its environ-

ment (the system) toward a target. Controller actions that alter the

state of the system appropriately (inappropriately) are rewarded

(penalized) and accrue in the value function.71 The fundamental con-

cepts of RL can be easily mapped to clinical decision processes in preci-

sion medicine wherein the medical professional can be viewed as the

controller or agent, the patient or patient population as the system, the

treatment and dosing decisions as actions, the disease state or bio-

marker as the state and the reward function as clinical utility. RL readily

lends itself to temporal processes because the agent and the system

interact in a sequential manner that results in short-term changes to

the state and long-term optimization of the value function. Pros and

Cons: ODE-based PK/PD models are readily implemented in RL,72,73

but the sample size requirements for reinforcement learning are high.21

8 | PMX VS . ML MODELLING

Table 1 provides a high-level summary of the contrasts between PMX

and ML modelling that need to be considered to effectively integrate

the 2 modelling strategies.

The main goal in PMX is inference of parameters of the structural,

variability and covariate model parameters in the population, whereas

the goal of ML is prediction of outcomes. The PMX structural model

is user-driven and guided by the modeller's (domain) knowledge of

mechanism. ML approaches are data driven and some techniques,

e.g. NNs can have excellent prediction performance, but can be per-

ceived as black boxes because it is difficult to extract mechanistic

insight.

Table 2 compares the data available for PMX modelling to the big

data problems that ML algorithms excel at solving. Big data are collo-

quially described by the 6 Vs, volume, velocity, variety, veracity, vari-

ability and value. Volume refers to the size of the datasets; velocity

refers to speed at which the data are created, processed and analysed;

variety is the heterogeneous structure that arises from combining

multiple data sources; veracity pertains to the robustness, reliability

and quality of data and collection methods; variability is related with

the stochasticity and noise of the data; and value is utility of the infor-

mation from the data.75

The most obvious difference between ML and PMX data sets is

the volume. The volume or size of the data sets can be characterized

by the number of dimensions (d) and the number of observations (n),

which is dependent both on the number of subjects and the number

of time points (T).

As a rule-of-thumb, a data set can be considered big when

n > 1000 and d > 50.74 Additionally, a data set can be tall when it con-

tains large number of observations and a small number of predictor

variables (small d, large n), and wide when it contains a small number

of observations and a large number of predictor variables (large d,

small n) or both (large d, large n). PMX data sets are much smaller and

more sparse than the big data required for ML. The choice of ML

methods within big data can depend on whether it is tall or wide.76

PMX and clinical data are usually generated at a much slower

velocity and, likewise, variety is typically limited in drug development

datasets, where serially sampled drug concentrations, selected bio-

markers and endpoints are typically measured. Patient specific

TABLE 1 Comparison of modelling strategies in pharmacometrics
vs. machine learning

Characteristic Pharmacometrics Machine learning

Goal Parameter estimation

and variability

characterization

Prediction

Foundation User driven, data driven

or mechanistic

Data driven

Workflow Iterative workflow,

manual review and

curation

Structured workflow

and automated

curation

Method Fit for purpose,

restricted scope

Generalizable and

versatile

Updating Static: new models

required

Dynamic: learning and

retraining

TABLE 2 Comparison of pharmacometric data to big data

Definition Pharmacometric data Big data

Volume Small Large

Sample size, n 5 < n < 1000 n > 1000

Time points, T 5 < T < 100 Variable

Dimensions, d 5 < d < 50 d > 5074

Velocity Batch acquisition Automated

acquisition

Variety Limited, structured,

homogeneous,

correlated

Variable,

heterogeneous

Veracity High integrity Variable, often

user dependent

Value Directly relevant to

outcomes

Inconsistent
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covariates are also included but may not be monitored throughout a

study. The veracity of the data collected for PMX modelling is very

high, with collection methods being controlled by trained individuals

supported by standard operating procedures. While interoccasion var-

iability and IIV and instrument (residual) variability is present in PMX

data, the primary goal of population PK/PD modelling is to character-

ize and enable population inference regarding these sources of vari-

ability. Many sources of big data have very high signal-to-noise ratio

as they may be obtained from using high quality collection methods

that digitally recorded events from calibrated sensors. In addition to

making learning possible, the large sample sizes in big data signifi-

cantly reduce sampling noise, which is dominant in sparse PMX data.

The population diversity and variability can also be better estimated

by using ML methods on big data sets. However, care must be taken

to avoid over-fitting in ML modelling, as it can compromise the gener-

alizability and the predictive performance.

8.1 | Model validation

Model validation is an integral part of theMLmethod. The test–training

approach wherein the available data is partitioned into train–test splits

of 70:30, 75:25 or 80:20. The model of interest is trained on the larger

subset of data, while the test subset is used to compare the perfor-

mance of the model to competing approaches, typically using metrics

such as mean square error (MSE), sensitivity, accuracy, area under the

receiver operator curve (ROC), AIC or BIC. Importantly, learning curves,

which plot method accuracy against training sample size are used to

evaluate the effectiveness with whichML algorithms learn.

In k-fold cross validation, the data are divided into k parts, with

the first k − 1 parts used to train the model, and kth part is used to

test the model. This is repeated k times, and the average of the test

scores across the k repeats is used as the model criteria. If k = n,

where n is the number of observations, this is termed leave-1-out-

cross-validation. The values of algorithm hyperparameters, which

control the learning process in the ML method, are often tuned using

k-fold cross validation sampling.

Bootstrapping is a resampling method in which m samples are

randomly selected with replacement to create the training set and the

unselected samples are used for testing. This process is repeated, usu-

ally from 1000–10 000 times, and the model criteria is averaged

across all sets. Based on the asymptotic characteristics of bootstrap

resampling, a ratio of 63.2% of the data set for training and 36.8% for

testing is frequently utilized.77

Because PMX data are typically limited in size, these model vali-

dation methods are not routinely used during PMX model develop-

ment. Furthermore, there is a lack of consensus on the definition and

approaches for PMX model validation.78 Model validation in PMX can

be interpreted as assessing uncertainty in parameter estimates,

goodness-of-fit plots and metrics. Additionally, the term validation

can be used to describe how a model performs when challenged with

a new external dataset.79

PMX modelling and drug development problems differ in distinct

ways from the big data problems at which ML methods have excelled

and proven their mettle. It is therefore important to systematically

identify specific ML methods best suited for individual application

areas in drug development and to adapt and refine them.

9 | APPLICATIONS OF ML IN
PHARMACEUTICAL SCIENCES

Now that we have formalized the distinctive approaches used in ML

and PMX, we review the trends, applications, limitations and promise

of ML in pharmaceutical sciences.

F IGURE 2 Publications of machine learning applications in pharmaceutical sciences from1995–2020. The publications by learning method
(pie chart, left) show the relative proportions of machine learning methods: supervised, unsupervised or optimization. Additional dissection of
supervised and unsupervised machine learning include classification, regression, or both applications. The bar graph (right) shows the number of
publications (y-axis) by area in pharmaceutical sciences (x-axis). CTS, clinical trial simulation; VP, virtual population; DDI, drug–drug interaction;
ADE, adverse drug event; IVIVC, in vitro in vivo correlation; PK/PD, pharmacokinetics/pharmacodynamics; QSAR, quantitative structural activity
relationship
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As of July 2020, a Web of Science search of “machine learning”
nested within the search of “pharmacokinetics or pharmacodynamics”
yielded over 100 publications. The publications were categorized to

1 of the following areas of the pharmaceutical sciences: PK/PD, dose

optimization, quantitative structure–activity relationship (QSAR);

adverse drug event (ADE) prediction and drug–drug interactions

(DDIs) and clinical trial simulation (CTS). Figure 2 summarizes the cat-

egorization of 65 ML publications in pharmaceutical sciences from

1995–2020. Supervised classification, regression, or a combination of

the 2 approaches are the most frequently used ML methods and

QSAR emerged as the most frequent application area. Table S1 sum-

marizes the pharmaceutical sciences applications and ML algorithms

that have been investigated in the literature.

As noted, previously several recent reviews have focused on

identifying the most promising and appropriate application areas and

ML tools.24–27 Talevi et al. provided an accessible primer on ML con-

cepts that included a case study that employed RFR for investigating

the structure–activity relationships of inhibitors of the putrescine

transporter of trypanosome parasites.27,80 Hutchinson et al. proposed

an implementation framework with 2 hypothetical examples that uti-

lized deep learning to perform global parameter sensitivity analysis

and for combining PK parameters with imaging and omics data.25

Koch et al. used CART-based ML approaches for covariate selection

in the context of a simulated data and clinically relevant example of

phototherapy for bilirubinaemia in neonates.81 In a commentary,

Chaturvedula et al. highlighted the use of genetic algorithms (GAs) for

model selection in population modelling and deep learning for target

identification in drug repurposing.24

9.1 | ML in PK/PD and PopPK

The earliest applications of ML in pharmaceutical sciences investi-

gated whether NN methods could be a surrogate for traditional PMX

modelling.

9.1.1 | ML studies of the PK/PD and PopPK of
antibiotics

PK data for the antibiotics: gentamycin, tobramycin and arbekacin

have been assessed using NN methods.82–85

NNs performed as well or better than NLME models for

predicting peak concentrations of gentamycin for 111 patients that

included patient covariates (age, height, weight, body surface area,

serum creatinine, and creatinine clearance).82 The predictive perfor-

mance of NNs was similar to NLME for steady-state peak and trough

(16.5 vs. 18.6%) concentrations. However, NLME outperformed ANN

when extrapolating beyond the measure dosage.

NN was used to predict the peak and trough plasma concentra-

tions of tobramycin using data from 101 paediatric patients.84 Dosing

information (dose, dosing interval, time of blood drawn) and patient

demographic variables (age, weight, sex, cystic fibrosis or cancer) were

input into the NN. The predictive performance of NN (33.9% absolute

error at dose initiation and 37.3% absolute error at steady state) vs.

NLME (39.9% overall absolute error) were comparable.

The predictive performance of NN was compared to linear and

logistic regression for dose efficacy optimization of arbekacin in

30 burn patients with the covariates (dose, BMI, serum creatinine,

parenteral fluid amount, and burn severity).85 NN outperformed both

linear and logistic regression on all outcomes predictions based

on AIC.

Smith et al. combined bench research, ML and mechanism-based

mathematical modelling strategies to investigate optimal dosing strat-

egies for treating carbapenem-resistant Acinetobacter baumannii.86

The GA was used to optimize a combination dosing regimen, which

resulted in a 19.6 g/d, 2-hour infusion every 5 hours of meropenem

with 5.17 mg/kg/d every 6 hours of polymyxin B.

Feretzakis et al.87 compared the performance of ML algorithms to

assess the dependence of antibiotic resistance/sensitivity status on

easily obtained demographic, bacterial and drug characteristics such

as gender, age, type of antibiotic, Gram stain status and type of sam-

ple in a large hospital microbiology laboratory database. The goal was

to identify the ML algorithms for predictive use in an intensive care

setting. They found that NN had a modestly higher area under the

ROC curve than RFR and kNN with k = 5. However, this descriptive

report did not identify any of the characteristics contributing to antibi-

otic resistance/sensitivity status. ML has been used to mine molecular

structure databases created for drug repurposing to enable antibiotic

discovery: a c-Jun N-terminal kinase88 inhibitor was identified as a

candidate antibiotic using an NN trained on a dataset of known bacte-

rial growth inhibitors and tested on a larger dataset of candidate

drugs; its antibiotic properties against several resistant bacterial

strains were evaluated in animal studies and its unique mechanism of

action were identified.89 These results are promising but research is

needed before the broader utility of ML for antibiotic discovery via

molecule repurposing can be considered established.

9.1.2 | ML studies of the PK/PD and PopPK of
other drug classes

Population PK data for tacrolimus, an immunosuppressive drug used

in organ transplantation that requires dose optimization because of its

narrow therapeutic index and large IIV, has been investigated in sev-

eral ML studies.90–93 Tang et al. performed a head-to-head compari-

son of 8 different ML methods: NN; multiple linear regression; CART;

multivariate adaptive regression splines (MARS); boosted regression

tree; SVR; RFR; lasso regression; and Bayesian additive regression

trees for tacrolimus dose optimization.90 The analyses included sev-

eral patient covariates, pharmacogenomic data and concurrent ther-

apy. CART outperformed all other ML methods with a mean absolute

error of 0.73 (95% CI: 0.63–0.82). Gim et al. compared CART, RFR,

and least absolute shrinkage and selection operator for determining

the influence of single nucleotide polymorphism (SNP) for predicting

of tacrolimus Cmax and AUC in healthy Korean males.91 Their results
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showed that all ML methods identified CYP3A5 SNP, rs776746 as the

best predictor of tacrolimus exposure. Other research groups have

also assessed the potential of ML methods for tacrolimus dose

optimization.92,93

ML methods has also been applied to digoxin dosing due to its

narrow therapeutic range and DDIs, which can be easily preventable

with active monitoring. The appropriateness of the initial dosing of

digoxin was assessed posthoc from 307 Taiwanese inpatient records

using 10 predictor variables, while serum digoxin concentrations

above <0.9 ng/mL were classified as inappropriate and used as the

response variable.94 The predictive performance was assessed using

the ROC AUC. RF showed the greatest predictive performance (ROC

AUC = 0.912) followed by MLP (0.813), CART (0.791) and C4.5

(0.784). Thus, it was concluded that the initial dose of digoxin can be

accurately predicted for increased safety.

Using an ensemble approach that included ML techniques

with NLME was investigated for predicting the concentrations of

the analgesic remifentanil in 30 patients with sex, weight, height,

age, BSA, lean body mass, infusion rate, infusion duration and

remifentanil dose as covariates. The average predictions from the

ensemble were compared to each method alone.95 The NN-NLME

ensemble (MSE = 55.17) outperformed NLME (MSE = 95.77), NN

(MSE = 57.12), SVM (MSE = 181.20) and the NN-NLME-SVM ensem-

ble (MSE = 70.80).

9.2 | ML applications in QSAR

QSARmethods are used for lead optimization in early drug discovery.96

The predictive performance of ML algorithms makes it an attractive

alternative to statistical regression-based approaches for QSAR analy-

sis. Additionally, QSAR analyses are well suited and easily implemented

withML based regression and classification methods.

For example, Mishra et al. utilized QSAR to extend Lipinski's97

molecular descriptors based on a catalogue of 60 000 molecules.98

Cortes-Ciriano used compared the predictive performance of: GBM,

partial least squares, RFR and SVR for predicting the potency of a

broad range compounds from their physiochemical descriptors.99

QSAR has also been used to predict plasma protein binding,100–104

blood brain barrier permeability,105–107 clearance,108–110 volume of

distribution,111–113 half-life,114 bioavailability115 and toxicity.116

ML-based QSAR has shown utility in in drug metabolism and PK to

predict compound metabolism,117,118 transporter transcriptional

upregulation,119 uptake, efflux and inhibition.120–126

9.3 | ML for DDIs

DDIs are a serious concern in drug development that lead to approxi-

mately 30% of clinical ADE.127 ML approaches are well suited for

identifying complex associations from large databases and have been

used for predicting DDIs.

The FDA Adverse Event Reporting System (FAERS) contains

reports of ADE128 to support the FDA's postmarketing safety

surveillance programme for approved drug and therapeutic biologic

products (https://www.fda.gov/drugs/questions-and-answers-fdas-

adverse-event-reporting-system-faers/fda-adverse-event-reporting-

system-faers-public-dashboard). The FAERS outcomes are death, life

threatening, hospitalization (initial or prolonged), disability, congenital

anomaly, or require intervention (if medical or surgical intervention

was required to prevent permanent damage) and other. Several

groups have utilized the FAERS in conjunction with other public-

domain data sources as input data for ML methods to gain insight into

potential DDIs. Zhang et al.129 integrated information from FAERS,

PubChem130 for chemical structure information, DrugBank131 for drug

targets, enzymes, and transporters, KEGG132 for biological pathway

information and SIDER133 for side effect information. Several ML

approaches have been utilized, including: convolutional neural

networks,134 SVM, kNN and NN,135 NB and CART,136 GBM,137 and

RFR.138

While the FAERS data sets are large, the utility of these

approaches is limited by data quality. The limitations include reporting

bias, the coarse granularity of the demographic and clinical informa-

tion and the nonrepresentation of treated subjects who did not expe-

rience adverse events. FAERS data are retrospective and are biased

because report submission is voluntary. The FDA emphasizes that the

database should not be used to obtain incidence statistics for adverse

events. The FDA does not require a causal relationship between an

adverse event to be established or proven for inclusion; there may be

insufficient information for evaluating even serious adverse events

and it is not possible to trace multiple AER on the same patient over

time. The FAERS database also presents drug information in the

vocabulary used by the submitter and therefore contains spelling

errors, trade names and other variations that complicate direct utiliza-

tion of the data. Text-mining of the literature has also been used to

identify DDIs.139,140

9.4 | ML for CTSs

CTS is a method to increase the potential success of clinical trials

by identifying and evaluating design and implementation inefficien-

cies to reduce the time, resources and financial burdens in drug

development.141,142 Allen et al.143 described a method to generate

virtual patients that simulates a biologically plausible range of out-

put from a desired model followed by the use of a modified

sum-of-squared errors cost function that compares the simulated

values to real-world data to obtain a new virtual patient population.

This method was further developed to harness used ML global opti-

mization algorithms, including: simulated annealing and nested simu-

lated annealing; Metropolis–Hasting; and GA.144,145 Additionally,

new approaches for translating the information gained from ran-

domized controlled trials to specific target populations using RF are

being developed.146
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10 | INTEGRATION OF ML IN PMX

10.1 | Covariate selection

Covariate selection is an area of population modelling within PMX

model development that may be promising for incorporating ML

methods. Statistical methods for covariate analysis are constructed on

linear regression-based selection methods such as stepwise regres-

sion, all subset regression, ridge regression and least absolute shrink-

age and selection operator.147

Previous work in our group demonstrated a novel approach to

integrate pharmacogenomics data in PK/PD modelling using informa-

tion theoretic approaches.148 This method was used to simultaneously

evaluate gene–environmental interactions using PK/PD, clinical out-

comes and genome-wide pharmacogenetic data. Novel and known

interactions between warfarin and gemcitabine were identified using

the K-way interaction information metric.

Koch et al. considered simulation scenarios where the implemen-

tation of CART assisted in the selection of both time dependent and

time independent ML analysis.81 For their time-independent analysis,

1-compartment models with a defined covariate relationship between

elimination rate constant (kel) and simulated covariates were simu-

lated. NCA was used to calculate half-lives for all 23 patients and

dichotomous outcome variable based on a half-life threshold was

obtained. CART was used to identify the most influential covariates

(i.e. risk factors) associated with higher half-life without knowledge of

the model used to generate the data Koch's time-dependent example

included age as an additional predictor variable in the decision tree

model. They found that CART was useful for identifying and ranking

the covariates.

Hall et al. applied MARS, a nonparametric piecewise ML method

for identifying linear and nonlinear relationships, for covariate selec-

tion.149 MARS identified ranges of weight and age that were predic-

tors of absorption, clearance and volume of distribution.

10.2 | ML approaches for modelling and
optimization

The earliest studies of ML evaluated NN strategies. The predictive

performance of NN was compared to population-based NLME82 and

individual level PK/PD83 models. Using simulated datasets from

PK-linked PD models, Gobburu et al.83 found that model mis-

specification was abrogated by using NN as a model-independent

approach to predict PK/PD concentration–time profiles. However,

NN performed poorly with sparse and noisy data.

Bies et al. used GA for automated model selection including

choice of covariate relationships, intervariability models, and residual

models.150 GA outperformed stepwise covariate modelling

approaches based on lower objective criteria.

In a novel strategy, Chen et al.151 incorporated the neural net-

work architecture for describing nonlinear relationships into the ODE

framework. Rachkauckas et al.152 incorporated this as a feature in the

Julia pharmaceutical sciences package. While this method offers the

potential to model inherently unknown relationships within a network

of ODE, it may carry a level of overfitting risk.

Bunte et al. evaluated combined parameter estimation and clus-

tering approach for population PK modelling of prednisolone.153 The

parameters for a 2-compartment model of prednisolone were

obtained using MLE and combined with Gaussian mixture modelling

for clustering with the EM algorithm.

10.3 | ML for precision medicine

There is emerging interest in using RL for designing strategies for pre-

cision medicine.21 RL has been investigated in the context of treating

sepsis,154 anaemia in renal failure patients on haemodialysis,155–159

propofol anaesthesia72 and chemotherapy.160

11 | CASE STUDY

In the following section, a simulation case study is performed to dem-

onstrate the utility of unsupervised ML methods to guide PMX model-

ling. The goal of this case study was to: (i) identify target biomarkers

to guide efficacy of a drug candidate; (ii) propose a structural PK/PD

model for further analysis; and (iii) identify potential subject variability

for covariate modelling.

11.1 | PMX simulation method and results

Concentration–time PK profiles were simulated for 200 subjects with

the 2-compartment model (Figure 3A) after oral administration of

1000 mg of drug. The typical value for the population clearance was

simulated with a linear covariate model:

TVCL=0:35+0:03×COV1+0:075×COV2

where COV1 and COV2 were subject-specific covariates generated

from normal distributions with a mean of 20 and 50 units, respec-

tively, with 20% CV. Between-subject variability was applied to CL

and the volume in the central compartment (V) using exponential vari-

ation with η set to 0.16. Residual variability of 20% was included on

the drug plasma concentration (C1) using a proportional error model.

The 200 simulated drug plasma concentration (C1) are shown in

Figure 3B.

C1 from the PK model was linked to the PD model through an

initial biomarker (B1, Figure 3C) using an indirect response model with

stimulation of the B1 production rate (kin,B1). The concentration of

B1 was linked to a second biomarker (B2, Figure 3D) by similar stimu-

lation of the B2 production rate (kin,B2). Finally, the concentration

of B2 was linked to a third biomarker (B3, Figure 3E) using an

indirect response model with inhibition of the production rate con-

stant (kin,B3).
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The maximum fractional extent of inhibition for B3 (Imax,B3) for

each subject was also provided using a covariate model:

Imax,B3 = 0:3+0:3× SNP1+0:03× SNP2

where SNP1 and SNP2 were binary variables indicating the presence of an

SNP. Four groups based on the genotype combinations SNP1 and SNP2

were generated, producing 3 phenotype groups with an Imax, B3 of 0.3, 0.6

or 0.9. The patterns in the time profiles of B3 are shown in Figure 3E.

Three additionally irrelevant variables (IR1, IR2 and IR3) were

simulated at 3 time points to act as negative controls to assess ML

modelling. The mean at times 0, 12 and 48 hours were set to

30, 50 and 70 mg/mL for IR1, 40, 60 and 90 mg/mL for IR2, and

50, 50 and 50 mg/mL for IR3, and all with 20% CV (Figure 4F).

11.2 | ML modelling methods and results

Three time points (0, 12 and 48 h) were selected for each C1, B1, B2,

B3, IR1, IR2 and IR3 from the PMX simulations to serve as input data

for ML modelling. These are highlighted as box plots in Figures 1B-F.

Unsupervised RF using the randomForestSRC R package with

default hyperparameters was used to identify the candidate target

variables for modelling. The model was fit to the entire observed

dataset, excluding the concentration time points. Minimal depth was

used as a variable importance measure where a threshold of 5, deter-

mined by the mean of depth distribution throughout the forest, was

used to characterize variables as important if they were smaller than

the mean depth.161 B2t = 48
, B1t = 48

, B1t = 12
, B2t = 12

, B3t = 48
, B3t = 12

,

IR3t = 48
, B1t = 0

, B2t = 0
, IR3t = 12

, and IR1t = 0
, were identified as candi-

date variables (Figure 3A).

Structural BN modelling was performed to construct a graphical

model of the interdependencies of the candidate biomarkers

identified from the RF. Three structural BN models were fit to the

candidate biomarkers at each of the observed times (0, 12 and 48 h)

using the hill-climbing structural learning algorithm in the bnlearn R

package. Biomarkers that did not contain associations (edges) in the

graph were considered irrelevant, and dropped from subsequent

analysis.

The BN at time 0 displayed no connections (no shown), probably

due to 0 concentration for all subjects and limited differences of vari-

ables at baseline.

F IGURE 3 Pharmacometrics simulation results for subsequent machine learning modelling methods. (A) Schematic of a 2-compartment
pharmacokinetic model (yellow circles) linked to a pharmacodynamic model (peach ovals) composed of 3 indirect response models that modulate
biomarkers B1, B2 and B3. (B) Simulated concentration–time profiles from the pharmacokinetic model for the 200 subjects (coloured lines, log
base10 scale), with the observed data indicated by the black dots and box plots at 0, 12 and 48 hours. The pharmacodynamic model simulations
for B1 (C), B2 (D) and B3 (E) for the 200 subjects (coloured lines, log base10 scale) are shown, with the observed data indicated by the black dots
and box plots at 0, 12 and 48 hours. (F) The simulated irrelevant biomarkers, IR1, IR2 and IR3 serve as the observed negative control biomarkers
indicated by the black dots and box plots at 0, 12 and 48 hours
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The BN at 12 hours identified appropriate dependencies

(Figure 4B) among the candidate variables. The association of Ct = 12

and B1t = 12 highlights the PK/PD relationship between concentration

in the plasma stimulating the production of B1t = 12. The association

between Ct = 12 and B2t = 12 due to the concomitant increase in the

levels of both variables at this time point. Furthermore, the catenary

response from B1t = 12 to B2t = 12 to B3t = 12 was identified and pro-

vides the insight into the original model. The irrelevant variable IRt = 12

was not associated with any of the other variables.

The BN at 48 hours Ct = 48 showed associations with all true bio-

markers and no associations to IR3t = 48. However, the catenary asso-

ciations among the biomarkers in the PD model were not identified

because B2 and B3 returned to near baseline for all subjects at

48 hours. These results demonstrate that the time sequence of events

and the associations can be captured using unsupervised ML

approaches and leveraged during PMX modelling.

The set of biomarkers identified via the BN associations (B1t = 12,

B2t = 12, B3t = 12, B1t = 48, B2t = 48 and B3t = 48.) were analysed with the

K-means clustering algorithms using the stats R package. Elbow and

silhouette plots confirmed 3 clusters were optimal (not shown). The

3 clusters from K-means were visualized using the first 2 principal compo-

nents; principal component analysis was conducted using the factoextra R

package. Figure 4C shows the 3 clusters that can be visualized using scat-

ter plot of the first 2 principal components. This demonstrates utility of

K-means for identifying subpopulations in a PMX dataset.

11.3 | Discussion

Unsupervised ML methods can aid pattern recognition within large

datasets to identify the most relevant variables and guide in the PMX

modelling building process in a data-driven manner. The 3 ML

methods used in this Case Study were RF, BN and K-means clustering.

The results show that candidate target biomarkers can be identified

using RF, while model structures for subsequent PMX modelling can

be suggested using BN and further insight into subject variability

within the dataset can be obtained using K-means clustering.

12 | ENVISIONING THE FUTURE OF ML
IN PMX

Given the rapid integration of ML and AI methods in other fields, it is

very likely that these methods could have transformative roles across

F IGURE 4 Machine learning modelling results from the observed pharmacometrics dataset using unsupervised machine learning methods.

Minimal depth of all biomarkers from the unsupervised random forest (A, y-axis) where lower numbers (x-axis) indicate closer to the root node
and more important, while variables that are higher than the threshold minimal depth (5, blue hashed line) indicate unimportant variables.
(B) Resulting Bayesian network at 12 hours (left, white background) and 48 hours (right, grey background) show the associations of the plasma
concentration (orange circles) with the true biomarkers (peach circles) and no associations with the irrelevant variables (yellow, ovals). K-means
clustering identified 3 clusters (C, blue cluster 1, green cluster 2, yellow cluster 3) for all identified candidate biomarkers
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every aspect of PMX and the drug development process. While recog-

nizing the promise and the untapped potential of ML, it is also impor-

tant to acknowledge the strengths, limitations and distinctive

differences in the underlying capabilities of both established PMX

vis-à-vis emerging ML methods in order to identify and define prob-

lems that are barriers on the critical path that need to be addressed in

pharmaceutical sciences research.

A word about sample size requirements and power because

among those in the PMX and pharmaceutical sciences community

unfamiliar with ML, there is sometimes the unrealistic expectation

regarding the effectiveness of ML methods. It should be emphasized

that as in statistical testing, the sample size for a given power (which

is equivalent to 1 − β, where β is Type II error or the probability of

false negatives) for ML methods are also determined by effect size,

variability (covariance or correlation in the multivariate setting) con-

siderations. An additional consideration in ML methods for high

dimensional data is the so-called curse of dimensionality (wherein the

addition of extra dimensions to a mathematical space exponentially

increases the hypervolume in which the data is distributed), which

increases the computational complexity and degrades the power of

algorithms. Generally, learning curves for ML methods show improve-

ments in performance that show a power law dependence on increas-

ing training sample size before reaching a plateau.

For practitioners, it is often helpful have handy heuristics or rule-

of-thumb for the sample size per candidate feature and also a sense

of the power law exponent for the ML method's learning curve to

guide data collection decisions. A widely used rule of thumb for sam-

ple size in linear regression is ≥10 samples per parameter in the

model. A study by van der Ploeg et al.162 compared the effective sam-

ple size requirements of ML methods for binary classification includ-

ing SVM, NN and RFR to LR and CART for clinical data sets found

that LR performed well once there were 20–50 events per variable

whereas SVM, NN and RFR were more data hungry requiring nearly

10 times more data. The training data set sample size requirements

for deep learning methods may be larger, e.g. in image classification

applications, a rule-of-thumb of 1000 training images per class is typi-

cally employed.163 However, the learning curves for deep learning

methods appear to show improvement with additional training data

even after traditional ML methods have reached plateau.87,164–166 In

addition, some caution may be warranted when using sample sizes

estimated for ML algorithms in image and signal processing applica-

tions, which have data with high signal to noise ratio, to guide PMX

modelling, which has multiple sources of variability.

Nonetheless, with a few exceptions, statistical power is often

not carefully assessed in many ML applications in PMX and pharmaceu-

tical sciences because the overall focus is to highlight the promise and

predictive potential of ML. Sucheston et al.167 systematically compared

the power of their information theoretic algorithm for gene–

environment interactions to LR and to multifactor dimensionality reduc-

tion method for a range of effect sizes and interaction models. They

found that their information theoretic ML method had greater power

than multifactor dimensionality reduction and was comparable to

LR. More recently, our group has compared the power and false

positive rate of our generalized pharmacometric modelling method,

which combines RFR with BN, to enable covariate modelling in PMX.64

ML algorithms also have utility for exploratory analysis of high

dimensional data in PMX even when sample sizes are small. For exam-

ple, supervised and unsupervised clustering techniques are widely

used for omics data and used to generate visually effective heat plots.

However, it must be appreciated that the while the resultant models

can indeed aid hypothesis generation, they may not be robust or use-

ful for predictive purposes; some of the features identified can be

expected to be volatile and difficult to replicate.

Figure 1, which envisions ML methods as a bridge between big

data and PMX, was guided by the possibility that sample size con-

straints may potentially limit the utilization of currently available ML

methods in stand-alone PMX applications that do not have adequate

big data. Furthermore, the studies to date suggest that ML methods

cannot supplant population PK/PD methods, which can consider the

pharmacology of the drug and incorporate system physiology in the

structural model. However, ML can complement population PK/PD

modelling by serving as a bridge for modelling and learning from big

data and by facilitating hypothesis generation. We posit that the pre-

dictive capabilities of ML in particular could have a notable impact on

dose individualization and personalized medicine.

As a practical matter that enables generalizability, there is also a

need to identify the most reliable and robust ML-based workflow for

each PMX application. It may be necessary to analyse data with sev-

eral appropriate ML algorithms and advance only those findings that

are common to multiple ML methods. Our research results that use

the results from RFR as inputs for Bayesian network modelling dem-

onstrates the utility of considering a pipeline of ML methods.

It is worth considering the most promising niches in PMX model-

ling that could potentially benefit the most from ML-based strategies.

In population PK/PD modelling, the covariate modelling component

be an attractive target. For example, our work suggests that ML algo-

rithms could be useful for building covariate models from high dimen-

sional genotyping methods.64,148 Similarly, large population-based big

data sets could be used extrapolate covariate models built from small

PMX studies to minority populations and also to populations that are

more diverse. The FDA and the PMX modelling community have rec-

ognized that the characteristics of the patients enrolled in drug devel-

opment clinical trials are quite frequently not representative of the

population at large.10,168 Another impactful area would be to consider

the natural history of the biomarkers of physiological processes across

the lifespan using well-curated and representative big data sets such

as population-based National Health and Nutritional Examination

Survey (NHANES, https://www.cdc.gov/nchs/nhanes/index.htm).

Because ML methods are capable of handling correlated high-

dimensional data and identifying the interdependencies amongst the

salient variables, they may be capable of providing better approaches

for creating representative virtual patients for clinical trial simulations.

However, another potentially interesting but unexplored ML applica-

tion is model-based meta-analysis in population PK/PD. It would be

interesting to investigate whether ML can be explored for building a

model for the population models for drugs in a given therapeutic class
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to enable decision making in the regulatory setting where large

amounts of the needed data might be available. Our results demon-

strate that ML-based preprocessing of big data could have a transfor-

mative impact in guiding the development of QSP models.64 ML

methods can provide structural networks for QSP models that are

guided by the interdependencies in biochemical and physiological bio-

markers. Although an ML-based strategy would require good quality

input data from population-based big data sets and clinical registries,

it could reduce the subjectivity and bias present in the manually

curated biochemical networks and literature review workflows that

are currently used for building QSP structural models.

Although ML has the potential to have a transformative impact

on PMX and drug development, the utilization of ML methods is at an

early stage. Much research on the choice of the specific problems,

algorithms, workflows and integration of findings is required to har-

ness the promise and move the field forward. There is, however, a

great deal of ongoing research interest in leveraging ML methods in

the pharmaceutical sciences that could render the methods and refer-

ences in this review outdated. The time is ripe to set up a consortium

of industry, academic, contract research organizations and regulatory

agencies to advance ML in the pharmaceutical sciences.

12.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2019/20 (Alexander et al., 2019 a,b).
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