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Abstract

Population pharmacokinetics consists of analyzing pharmacokinetic (PK) data collected in groups of individuals. Population PK is widely used to guide
drug development and to inform dose adjustment via therapeutic drug monitoring and model-informed precision dosing. There are 2 main types of
population PK methods: parametric (P) and nonparametric (NP). The characteristics of P and NP population methods have been previously reviewed.
The aim of this article is to answer some frequently asked questions that are often raised by scholars, clinicians, and researchers about P and NP
population PK methods. The strengths and limitations of both approaches are explained, and the characteristics of the main software programs are
presented.We also review the results of studies that compared the results of both approaches in the analysis of real data. This opinion article may be
informative for potential users of population methods in PK and guide them in the selection and use of those tools. It also provides insights on future
research in this area.
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In 2 separate articles, we have reviewed the character-
istics of parametric (P) and nonparametric (NP) ap-
proaches in population pharmacokinetics (popPK).1,2

The aim of this third article is to answer some fre-
quently asked questions that are raised by scholars, clin-
icians, and researchers interested in popPK and model-
informed precision dosing (MIPD). The comparative
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strengths and limitations of both approaches will be
highlighted to inform potential users and guide them
in the use of those tools.

Briefly, both P and NP methods share in common
their usual reliance on compartmental models to de-
scribe the pharmacokinetics (PK) of a drug. In both
approaches, the structural model, that is, the group
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of equations describing the relationship between drug
dosage and drug concentration as a function of time, is
assumed to be similar across all individuals. Differences
in the concentration-time profiles among subjects re-
ceiving the same drug at the same dosage regimen, that
is, interindividual variability (IIV), are assumed to arise
from each individual’s specific set of PK parameters.
A major goal of a popPK analysis is to estimate the
variability of those PK parameters by estimating their
distribution within the population of subjects.

The P and NP approaches differ mainly in the
statistical properties of the distribution of population
PK parameters. A formal statistical distribution (eg,
Gaussian, log-normal) is assumed in P methods. Most
of the time, the variability is described as a mixed-
effects model, with a distinction between fixed effects
(average or typical PK value in the population) and
random effects (IIV around the average).3 In contrast,
NP methods consider a discrete distribution, without
specific shape. There is no mixed-effects model for the
PKparameters, and the entire discrete joint distribution
is computed as a set of discrete “support points,” with
each point comprising values for every parameter in
the model and an associated probability of those values
based on their “ability” to predict the observed data.

Modern P andNP popPK approaches usemaximum
likelihood principles to estimate the population PK
parameters. Both approaches involve a residual error
term capturing how the model individual predictions
deviate from the actual observations.

General Questions on Both Approaches
How “Different” Are Results Obtained for a Data Set
When Using Parametric vs Nonparametric Analysis? Are
the Results Substantially Different?
The main difference lies in the way that PK parameters
are reported.

As mentioned previously, P methods provide sep-
arate estimates of a fixed effect (typical value, often
denoted as θ ) and a random effect (a measure of
variability, often denoted as η) for each PK parameter
included in the structural model. This means that 2
values should be available and examined in the results
for each parameter (eg, θCL and ηCL as the fixed
and random population values, respectively, for the
clearance [CL] parameter). The P methods also provide
a standard error (SE) or relative standard error (RSE)
for both the fixed and random effects, which quantifies
parameter uncertainty in the estimation. Sometimes,
the modeler may decide not to estimate variability
for a given parameter by fixing η = 0, for example,
when the SE of the corresponding random effect is too
high. In such a case, only a fixed effect is reported.

The coefficients describing the residual error are also
provided along with their confidence interval.

With P methods, the estimates of fixed and random
effects strongly depend on prior assumptions about
the statistical distribution of the popPK parameters
(eg normal, log-normal, mixture of log-normals). Such
assumptions cannot be directly verified from the con-
centration data. However, different distributions can be
compared in their ability to fit the data.

It should be noted that the assumed distribution is
not explicitly provided in the output of a run with P
methods. Also, the estimates of random effects from a
P method should not be confused with the variability
of the PK parameter themselves.

In P methods, random effects are assumed to have
a Gaussian distribution: η ∼ N(0,ω2). Programs such
as NONMEM (ICON, Dublin, Ireland) or Monolix
(Lixoft, Antony, France) provide the standard deviation
(SD; ω) or the variance (ω2) of random effects. Under
the assumption of a log-normal distribution, popula-
tion variance and SD of the clearance, for example,
should be derived as follows:

Var(CL) = θ2∗
CLω2

CL

SD (CL)=θCL∗ωCL

The IIV on CL is often estimated by its coefficient of
variation (CV%), that is, the ratio between the popula-
tion estimate and its SD—ωCL in the case of ωCL≤0.1.
The P algorithms can compute the covariance between
random effects; however, it is the modeler’s decision
to include no covariance or covariance between some
or all PK parameters. This decision can influence the
model fit and parameter estimates.

In contrast, NP methods do not provide values
of θ and ω with their SE but, instead, provide a
collection of support points, as previously mentioned.
This collection can be viewed as a matrix of population
parameter values. Each line of the matrix is a support
point of the discrete distribution, that is, a set of PK
parameter values associated with a given probability in
the population. A statistical summary of this matrix
is provided with mean, median, and variability mea-
sures. However, it is the matrix that fully describes the
population distribution, not the statistical moments or
summaries directly estimated by the P methods. The
NP outputs also include the estimate of the residual
error SD, which includes an additive or multiplicative
coefficient that inflates the fixed assay error polyno-
mial model in NPAG/Pmetrics (Laboratory of Applied
Pharmacokinetics and Bioinformatics, USC, Los An-
geles, California). By default, no parameter SE/RSE is
provided, since the algorithms estimate support points,
not means and variances. However, SE around support
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Table 1. Population PK Parameter EstimatesWith a Parametric Method

Parameter Value Relative Standard Error (%)

θV 17.63 6.32
θCL 14.27 5.68
ωV 0.061 108.68
ωCL 0.115 27.78
b 0.312 9.24

CL, clearance; PK, pharmacokinetic; V, volume.
θV and θCL are the population volume (in L) and CL (in L/h), respectively.
ωV and ωCL are the standard deviations of the random effects ηV and ηCL

b is the coefficient of the residual error model.
The standard deviation of V and CL can be derived by calculation:
SD(V) = θV*ωV = 1.08 L and SD(CL) = θCL*ωCL = 1.64 L/h.
The data set included 84 plasma concentrations of cloxacillin from 11
patients.4 This was a preliminary run with a 1-compartment model param-
eterized with V and CL and a proportional residual error model. Log-normal
distribution was assumed, without covariance. The Monolix software was
used.

points can be obtained with some advanced techniques
based on Monte Carlo sampling.2

As the entire joint distribution of PK parameter
is estimated, covariance between parameters is always
computed and provided in the outputs.

As an example, Tables 1 and 2 show the typical
results obtained after the analysis with a P and an NP
program, for the same real data set from a previously
published study.4

Only a few studies have reported comparative anal-
ysis of results provided by P and NP methods. Table
S1 summarizes the findings of selected studies that
compared P and NP analysis of real data sets.5–14

To our knowledge, no study reported an independent,
blinded analysis of a data set with the 2 approaches.
Mentré and Mallet5 as well as Carlsson et al7 used
the 2 approaches sequentially in the model building,
with results from NONMEM (P) being used for the
NP analysis (NPML or NPAG algorithm) and vice-
versa. De Velde et al14 stated that their analysis with
NONMEM (P method) and NPAG (NP method) were
independent. In that study, the structural and covariate
models identified with NONMEM and NPAG were
the same, which supports the consistency of both
approaches. Regarding PK parameter values, the esti-
mates of mean ormedian parameter values were overall
similar in all studies reported in Table S1. However,
larger IIV was consistently reported with NP methods.
This was especially striking in the study from de Velde
et al, where IIV was not set on PK parameters except
the elimination rate constant (ke) in the NONMEM
analysis, while variability was set on all parameters on
the NPAG analysis.14 This means that ke was the only
parameter that could explain overall PK variability in
the NONMEM analysis. Interestingly, the CV% for
ke was still greater with NPAG than with NONMEM

Table 2. Population PK Parameters Estimates With a Nonparametric
Method

Support Point

Support Point
Number CL (L/h) V (L) Probability

1 11.185 16.296 0.182
2 22.003 23.852 0.104
3 18.689 20.455 0.186
4 23.367 39.667 0.088
5 15.181 19.635 0.107
6 18.494 15.066 0.086
7 13.719 10.673 0.098
8 12.939 13.074 0.102
9 12.939 13.016 0.047

Population Parameter Value Summaries
CL (L/h) V (L)

Mean 16.34 19.12
SD 4.06 7.43
CV% 24.83 38.86
Variance 16.47 55.19
Median 15.18 16.30

Covariance and correlation
Covariance 23.15
Correlation 0.768

Residual error
Gamma 1.15

CL, clearance; CV, coefficient of variation; PK, pharmacokinetic; SD, standard
deviation; V, volume.
The data set included 84 plasma concentrations of cloxacillin from 11
patients.4 This was a preliminary run with a 1-compartment model param-
eterized with V and CL. The Pmetrics program was used.

(34% vs 19%), and high CV% values were found for
the other parameters with NPAG. Despite this large
difference in variance estimation, the model predictions
from both approaches were very similar. Studies from
the Limoges group compared the performances of an
in-house iterative 2-stage Pmethod versus NPAG in the
analysis of rich PK data sets of immunosuppressant
drugs from transplanted patients.11,13 P and NPmodels
were built in parallel, using 2 gamma distributions to
describe the absorption phase and a 1 compartment
model with first-order elimination for mycophenolic
acid and tacrolimus. Interestingly, estimates of parame-
ters that depended on volume of distribution were very
similar between the approaches. By contrast, estimates
of the shape and scale of the 2 gamma distributions
describing the absorption phase were quite different
between the P and NP models. Parameter variability
was also larger with the NPAG algorithm. However, the
performance in terms of exposure (area under the curve
[AUC]) estimation was overall very similar. In another
study on cyclosporine, the same group compared 3
popPK approaches including 2 P approaches (IT2B
and NONMEM) and NPAG.9 The typical value of
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central volume of distribution in the population were
very similar with NONMEM and IT2B (222 L and 204
L, respectively) while it was lower with NPAG (97L).
The typical values of the absorption rate constant
and CL were similar among the 3 approaches with
absorption rate constant values of 5.72/h, 4.06/h, and
6.95/h and CL values of 41.2, 59.5 and 61.1 L/h for
NONMEM, IT2B, and NPAG respectively. Finally, the
predictive performances were similar but slightly better
for the NPAG model in comparison to NONMEM or
IT2B.

To summarize, previously published data reported
some differences in popPK parameter estimates be-
tween P and NP methods in the analysis of a given
data set. Most of the time, variability reported as SD
or CV% was larger with NP methods. However, there
is an inherent problem comparing studies by mean
and SD or CV%. P or NP techniques will generally
equally describe and summarize parameters that have
a real Gaussian distribution and those that are not
normally distributed but have a nonetheless reasonably
symmetric distribution (eg, a bimodal distribution).
However, the bimodal nature of the latter may not
be identified by the P methods.15 Parameter distribu-
tions that are highly skewed or include outliers (eg,
clearance by polymorphic enzyme pathways) are likely
to be described differently by P and NP approaches.
With the latter, support points describing the outliers
with extreme parameter values but low probabilities
will inflate the overall variability described as SD
or CV%.

If results are substantially different, how do we apply
this information to the dosing of drugs in patients, such
that patients get safe and effective therapy? In terms of
therapeutic drug monitoring (TDM),will P and NP analysis
give substantially different results in terms of dosing?
Limited information exists on this question. In their
study on gentamicin in neonates, Mallet and Mentré5

showed that the models built with NONMEM and
NPML could lead to different dosages in some individ-
uals. This was due to difference in the way covariates
were coded and handled in the 2 programs.

De Velde et al14 mentioned that the difference in
parameter variability between the P and NP models
of imipenem could result in differences in simulations
based on those models, such as probability of target
attainment. However, this was not investigated in
that study. Woillard et al9 proposed combining the
estimation of the different approaches for cyclosporine
because AUC estimates outside the ±20% interval in
the validation data set were not the same with the 3
approaches (NONMEM, IT2B, and NPAG). They
compared 2 strategies for combining the dose recom-
mendations: (1) the arithmetic mean of all 3 proposed

doses; and (2) exclusion of 1 of the 3 values when it
was too different from the 2 others (difference >15%)
and arithmetic mean of the remaining 2. Overall,
both strategies were similar and better than using
a single method.9 These authors also used a similar
approach formycophenolatemofetil in heart transplant
recipients for whom 2 independent models were
developed (IT2B and NPAG).10 They showed again
that mispredicted AUCs were not the same with the
2 approaches and that arithmetic mean of AUC from
the 2 approaches provided the best dose suggestion,
consistently with the reference method based on the
linear trapezoidal rule applied to the full PK profiles.10

However, further research should be conducted to
assess the potential consequences of differences be-
tween P and NP models on dosage design for both
populations and individuals.

Regarding TDM applications, as mentioned in the
paper on the NP methods, programs based on P and
NP models do not use the same Bayesian framework
to estimate individual PK parameters and compute the
dosage based on TDM results.2 To our knowledge, all
programs based onPmodels use a single parameter esti-
mate, the maximum a posterior (MAP) to compute the
dosage. By contrast, the multiple-model method (also
known as stochastic control) uses the entire discrete NP
Bayesian posterior distribution in dosage design.

There are arguments supporting the superiority of
the stochastic control approach in control theory.16

This was confirmed in a simulation study with van-
comycin from Jelliffe et al.17 They showed that the
multiple-model dosing method based on NP popu-
lation models was better than the traditional MAP
based on P models for reducing IIV and achieving the
concentration target after feedback from TDM results.

However, there is a lack of comparative studies
with real data. As shown in Table S1, Premaud et
al performed external validation of the mycophenolic
acid models built with NONMEM and NPAG by
computing AUC and predicted concentrations in a data
set different from that used in model building.8 They
reported better predictive performance of the NPAG
model on this occasion. One can assume that this
might lead to difference in dose adjustment based on
the estimated AUC in some patients, but this was not
formally assessed in the study.

We are currently performing comparative studies
on this matter using BestDose (Laboratory of Ap-
plied Pharmacokinetics and Bioinformatics, USC) and
Tucuxi (HEIG-VD, Yverdon-les-Bains, Switzerland),
a recently developed software based on the paramet-
ric approach.18 For busulfan in children, the results
in terms of predicted exposure and dosages were
very similar, and the differences were not clinically
relevant.19
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Why do regulatory agencies ask for and accept parametric
popPK for submissions? It seems that agencies do not
accept NP analysis. Is this true? If so, is it a function of mis-
understanding by regulatory agencies or less confidence
in nonparametric analysis?
Both the US Food and Drug Administration and the
European Medicines Agency provide a guidance for
industry on popPK analysis for drug submission.20,21

They both require a detailed description on the mod-
eling development steps, that is, from base model
building to final model simulations and applications, so
that the assessor can understand the modeler choices,
without establishing strict rules on how to make the
analysis. In particular, the methods section of the
European Medicines Agency document states, “The
choice of analysis (eg, parametricmaximum likelihood,
non-parametricmaximum likelihood, Bayesian) and the
choice of estimation method (eg, FO, FOCE, FOCE
INTER) should be stated and justified.”20 The Food
and Drug Administration guidance21 does not explic-
itly mention the allowed type of analysis, but cites
the paper of Tatarinova et al22 on NP methodologies
among those to consider for popPK investigations.
Based on the American and European agencies’ offi-
cial documents on popPK analyses, both approaches
appear to be acceptable for submissions.

On the other hand, it is true that the P models,
as implemented in NONMEM,23 MONOLIX,24 and
Phoenix (Certara, Princeton, New Jersey) are consid-
ered as the industry standards and are the most widely
employed software programs in this setting. We believe
that the main cause of the larger use of P methods
in drug development is historical. The development of
NONMEM by the San Francisco group led by Lewis
Sheiner was contemporary to that of popPK modeling
itself. Thus, popPK is often described in terms of
nonlinear mixed-effects modeling and associated with
P methods only. We also think that the NP method-
ology suffers from the same preconceived opinion as
NP statistics in general. The NP approach is indeed
probably harder to conceptualize and understand. The
P methods are based on well-known statistical distri-
butions (eg, Gaussian, log-normal) and are probably
easier to handle for beginners. Finally, theNP approach
has been more associated with individualized drug
therapy and dosage adjustment than drug development
by its supporters.25

Do P and NP Analyses Require a Different Type and Level
of Knowledge to Use and Interpret?
As previously explained, concepts, output results, and
interpretation of P and NP approaches are a bit differ-
ent. Yet we do not think that the level of knowledge
required is fundamentally different. We have trained
many master and PhD students to work with both P

and NP methods for analyzing the same data sets and
they did not report a significant difference in skills
requirements.

What Are the Strengths and Limitations of Each of These
Methods?
Compared to the classic methods, population
approaches allow for PK characterization using fewer
or unequal numbers of observations per patient, ir-
regularly measured concentrations, and concentrations
without regard to steady-state conditions, all opening
up the possibility of gathering information, especially
for populations who are challenging to study, like preg-
nant women or neonates.26,27 Both P and NP methods
can be used in both industrial drug development and
optimization of clinical patient care and constitute the
basis of model-based TDM software programs.

Common limitations of both P and NP approaches
are those related to the use of mathematical models
to describe a phenomenon, that is, data reliability
along with problem oversimplification. The latter is a
limitation in the sense that the information of all the
underlying physiological phenomena is averaged and
thus lost. However, this can also be considered as a
strength. Indeed, few parameters allow for the essential
description of a system and inform on its important
properties (eg, absorption, distribution, metabolism,
and excretion in the case of popPKmodels).Whichever
the choice between P and NP approaches, the quality
of the data is crucial for popPK analysis, as they are
the foundations of the model, and poor data lead to
a poor model useless for the intended application.28 It
is thus strongly recommended to limit inaccuracies and
biases in data collection by establishing and successively
following clear protocols and procedures.

A strength of P approaches is the use of summary
statistics to characterize the probability distribution of
the parameters, that is, typical values and variabilities,
allowing for a huge range of statistical calculations
and tests based on the central limit theorem. The
method also allows for easy interpretation of covariate
effects, as they are integrated as fixed parameters in
the models, and for simulation from the naturally
continuous probability function describing the joint
population parameter value densities. Another strength
of the P methods is the larger community of users,
which facilitates training and collaborations.

The most important criticism of the P approaches
is the assumption of a priori distributions of the
parameter value distributions in the population and
that these distributions can be entirely described by
their statistical moments or summaries such as means
and covariances. Any violations of the assumed dis-
tribution, for example, nonnormal data or unexpected
subpopulations and extreme individuals, are likely to be
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poorly characterized.15 Of course, as the drug develop-
ment process is focused on dosing for the majority, this
approach often works adequately.

The main strength of the NP methods in population
PK is the flexibility associated with the lack of
statistical assumptions about parameter distribution.
Therefore, those methods are likely to better identify
subpopulations and outliers. When applied to TDM
and drug dosing in individuals, NP models are
especially suited to compute optimal dosage with
maximum precision. The BestDose software includes
various fitting methods based on NP methods, which
is also a practical advantage in this task (see below).29

Although not a theoretical limitation of NP meth-
ods, current NP software programs do not model some
specific pharmacodynamic data (eg, count data, time
to event) and provides only a global estimation of
variance without distinction between interindividual
and interoccasion variability. Finally, the discrete prior
distributionsmust be converted into sums of normal for
simulations.

More details on the strengths and limitations of each
method are provided in the 2 previously mentioned
papers on P and NP methods.1,2

Is There a Way to Decide Which Method Gives the Most
Precise and Accurate Information As It Applies to Drug
Use in Patients?
First, we believe it is unlikely that a givenmethodwould
be better for all drugs and situations. The modeling
results may depend onmany characteristics of the drug,
the population, and study design. The only way to
establish the superiority of one method for a given
analysis would be to perform a comparative analysis
of a common set of popPK data, and to validate
both models using an external data set to figure out
whichmethod better predicts drug exposure and dosage
requirements. This has scarcely been done. The studies
from the Limoges group are good examples.8–13 Indirect
clues that may help to define a preference between P
and NP models applied to a common data set can be
derived from classic diagnostics of model fit, such as
the concordance between observations and predictions
and the distribution and absence of suspect trends in
residuals.

Is One Method More “Labor” Intensive Than the Other?
Regarding the modeling labor, we see little difference
between the methods. The preparation of data sets
and analysis of results are very similar. A common
characteristic of all the P and NP programs is the
necessity to format the data according to their specific
requirements before starting the analysis. Essential in-
formation for all of them is individual dosage regimen
details, times of drug intake, time of sampling, and

measured concentrations, together with any relevant
factors susceptible to influence drug concentrations.
Such data are organized chronologically for each sub-
ject in the data set, and minor modifications are re-
quired to switch from a P or NP software to another.
Importantly, visual and statistical inspection of the
data set to detect potential inaccuracies should be the
initial step of any PK analysis. All the most widely
used popPK software programs but NONMEM have
a graphical interface and/or embedded code for visual
or statistical analyses of popPK results. Nevertheless,
this is possible for NONMEM users thanks to the
development of Pirana, a workbench software tool that
allows for organization andmanagement of model runs
and interpretation of results.30 Simple model execution
together with advancedmodeling and simulation calcu-
lations with NONMEM are in addition possible with
the Perl-speaks-NONMEM library.31–33 Use of Pirana
and Perl-speaks-NONMEM or other tools developed
to ease NONMEM use (eg, Wings for NONMEM) is
currently standard practice among NONMEMmodel-
ers, and, when not, should be strongly encouraged be-
cause these programs allow for analysis traceability and
reproducibility. In addition, their employment removes
several barriers in the learning process of NONMEM
for young researchers. However, those programs neces-
sary for pre- and postprocessing of NONMEM require
additional training.

In terms of computation time, the NP methods have
been described as slower than P methods, which was
true for the first algorithms (NPML,NPEM) compared
with the fast first-order approximation (FO; but inac-
curate and, therefore, no more used in P analyses) and
FO with conditional expectation (FOCE) methods in
NONMEM. The most recent NP algorithm (NPAG) is
much faster. In any case, the improvement in computer
performances, including the possibility to parallelize
calculations on multi-core processors, have sped up the
running time for both NP and Pmethods. Indeed, com-
putation duration rarely represents a barrier for popPK
calculations nowadays, and very complex models can
be executed in acceptable running times. However,
there is a lack of modern comparative studies on this
question.

How do methods of validation of each method work?
It seems if one has either a very large data set, which
can be broken randomly into 2 parts (model building
and validation) or 2 separate data sets, this would be
good. Using data that is randomly chosen from the data
set that was analyzed to validate the model may raise
concerns.
The validation methods are similar for P and NP
methods. Those include internal validation (good-
ness of fit and simulation-based diagnostics such as
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prediction-corrected visual predictive checks) and ex-
ternal validation methods. External validation can be
performed with data splitting or by using a true exter-
nal “independent” data set, which, whenever possible,
should be the method of choice. It is most important
to perform external validation for models to be used
for TDM, as this emulates the real conditions of model
use.

Questions on P Methods
There are several programs supporting population P
methods (NONMEM, MONOLIX, Phoenix, R). There are
differences in the algorithm available within each one, as
well as in the overall environment. For example, users of
NONMEM often have to handle a collection of programs
for postprocessing of data. Could the author summarize
the mains characteristics, strengths, and limitations of the
main programs available?
The authors are most familiar with NONMEM and
MONOLIX. NONMEM is the oldest program imple-
menting P methods,23 developed by the popPK pio-
neers, and it has no graphical user interface to directly
retrieve the models and explore runs’ results in contrast
to the more recent Phoenix and MONOLIX24 pro-
grams. NONMEMwas originally conceived to provide
model parameter estimations and simulations from a
command line. Therefore, a modeler needs to compile
the control streams to perform the analyses in NON-
MEM by writing the code directly, and to perform data
management and results exploration by means of self-
developed tools. However, several programs have been
developed to facilitate NONMEM use33 and fill the
gap in terms of ease of use between it and the newer
software programs for P analyses.

MONOLIX and Phoenix NLME are more recent
programs. They provide an integrated environment for
modeling and simulation as desktop software. Both
programs have a user-friendly graphical user interface
that provide a visual workflow for modeling project.
Phoenix NLME embeds a higher variety of models
than the templates offered by Pirana, in addition to
modeling features to handle other type of data (eg, data
below the limit of quantification). However, this is also
possible in NONMEM by writing the appropriate code
in the model scripts. Advanced self-written models can
be implemented in the commercially available computer
programs, so that they are all highly flexible. It is
worth noting that NONMEM is regularly updated
with the addition of the newest algorithms for popPK
analyses, and therefore it offers a large choice of
minimization techniques for parameter estimations34

that might be hard to handle in other software
programs.

Of course, the algorithms used by differing software
packages also differ. NONMEM includes various
options for FO (rarely used due to mathematical
inconsistencies), FOCE, and FOCE with interaction
(FOCEI). Recent versions of NONMEM also includes
modern algorithm including Monte Carlo importance
sampling and stochastic approximation expectation
maximization (SAEM), as well as a semi-NP method.
Phoenix NLME also provide several P methods
(FOCE, Laplacian, QRPEM) as well as a NP engine.
However, popPK analysis with the NP methods
included in NONMEM and Phoenix have been rarely
reported. By contrast,MONOLIXuses only the SAEM
algorithm, with strongly proven convergence and
efficacy.35

The open-source R software,36 typically used for
pre- and postprocessing of data and results, now
implements a specific package, nlmixr, for P nonlinear
mixed-effect modeling.37 Parameters estimates and
precisions obtained with the nlmixr algorithms were
comparable to those estimated using MONOLIX and
NONMEM.38 This package requires the knowledge
of the R environment and language but represents
a valid free and open-source alternative to the other
commercially available P software programs. On the
other hand, all-purpose statistical software such as
Stata (StataCorp, College Station, Texas) or SAS
(SAS Institute, Cary, North Carolina) in addition
to R increasingly include nonlinear mixed-effect
regression routines that perfectly allow nowadays
to treat popPK problems of a reasonable level
of complexity.

Despite the availability of modern algorithms computing
exact likelihoods (eg, SAEM), it seems that the FOCE(I)
methods, which compute approximate likelihoods, re-
mains widely used. What are the reasons for this? Are
some data of expert opinion available about which algo-
rithm should be used depending on the data set and model
parameterization?
In a recent tutorial on the estimation methods imple-
mented in NONMEM, Robert Bauer delineates gen-
eral guidelines for the use of classic linearization and
expectation-maximization (EM) algorithms depending
on the available data and model parametrization.34

While stating that the modern EM methods can solve
all the possible problems and are more suited for very
sparse data than FOCE, he points out their consider-
able overlap in application and usefulness with the clas-
sic methodology and suggests to compare the results
obtained using a variety of methodologies. Indeed, the
performances of the EM algorithms against FOCE(I)
on parameters estimations do not markedly differ in
complex but also simple scenarios.34,39,40 However, the
FOCE(I) runtime has been reported to be shorter
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than for SAEM, as implemented in NONMEM, in
several settings including sparse or rich sampling study
design.39,40 We believe that the modeler’s habits play
a great role in the choice of an algorithm. It is
indeed important to realize that FOCE(I) is among
the first algorithms implemented in NONMEM, so
that modelers got familiar with it since the beginning
and trained the following generation of researchers to
use this algorithm in favor of those computing exact
likelihoods.

The residual error models in most parametric programs
is not based on measurement error, which is surprising. It
is not rare to see published models with constant additive
error, which is unrealistic considering the precision pat-
tern of most drug assays. When data are available from
laboratories regarding the assay error, those should be
taken into account in the modeling of such data.
In P analyses, a combined additional and proportional
error model most frequently depicts the residual un-
explained variability, which arises from physiological
intraindividual variation, model misspecification, er-
rors in independent variables along with assay error.
Sometimes, models with only the proportional com-
ponents are preferred, while models with only addi-
tive components are best suited for drugs having flat
concentration-time profiles, that is, negligible differ-
ences in concentration values all over the dosing inter-
val. It is true that information on assay measurement
error is not explicitly integrated in the residual error
for P methods with which we are familiar (but see
NP methods below). However, in 1995 Karlsson et al41

reported that the analytical error was usually much
lower than the proportional error term of the residual
unexplained variability, meaning that model misspec-
ification, physiological intraindividual variability, or
errors in sampling and/or dose information would be
of a greater impact.We then believe that the addition of
the analytical assay data wouldmarginally influence the
results, taking into account the important improvement
in the quantification methods made during the past
years. On the other hand, even if the effect is small,
neglecting a quantifiable, known source of variability
seems counter to the philosophy of modeling. At the
least, a good practice for a P modeler is to verify
that the additive error component is comparable to
the lowest quantifiable concentrations, and the propor-
tional component is higher than the reported analytical
method CV%. Of note, the only information about
bioanalytical assay explicitly considered in parametric
analyses is its limit of quantification, as severalmethods
exist to handle concentrations below this value when
they are available.42,43

Quite often, simplification of the statistical model is done
with P models, such as ignoring the covariance between
parameters or setting parameters with only fixed effect
and no random effect (eg, absorption rate, volume, or
intercompartment clearance). This is often justified by
the inability to precisely estimate those random effects,
despite being unrealistic from a biological perspective.
In addition, this is likely to increase the chance to
identify significant covariates on the remaining random
parameters, possibly false positive.
Inclusion of interindividual variabilities on the PK
parameters and covariance terms between them is
clearly data driven in P analyses. It is historically true
that covariance has often been neglected, even when it
deserved to be taken into account. Still, these random
effects must be added in the models using a stepwise
strategy and kept in it only if a significant statistical
improvement of the data description is observed. The
inclusion of variabilities not supported by the data
would, first, not be statistically significant and, sec-
ond, give unsuccessful results, with poor estimations
of several fixed and/or random-effects parameters. Al-
though unrealistic from a biological perspective, the
model with less but well-estimated parameters will
produce an adequate fit of the data. The principle
of parsimony is largely accepted in the P approach:
The simplest model should be chosen among all those
providing appropriate fitting. In addition, models are
judged for their fitness of purpose, as increased model
complexity does not always correspond to better data
description. To limit the detection of false-positive PK
parameter–covariate relationships and their integration
in the model, however, it is strongly recommended to
verify their biological plausibility before starting the
covariate search. It is worth commenting that when
modelers are forced to fix model parameters to have
zero (co)variance, this represents a failure of study
design and suboptimal sampling.

A strength of parametric methods is the ability to include
intraindividual also denoted as interoccasion variability
in the modeling. However, is it possible to handle such
variability in model-based TDM software?
Parametric model-based TDM software relies on
Bayesian inference, which allows the computation of
the individual PK parameters by informing the pop-
ulation model with patients’ characteristics and con-
centration measurements. Such parameters are then
used for therapy individualization by maximizing the
probability of target achievement between several pos-
sible dosage regimens. This strategy is now referred
to as MIPD,44 and several dedicated software tools
implement it.45,46 The interoccasion variability (IOV) in
P models allows for different parameter values within
an individual when PK observations are obtained on
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several occasions. Its incorporation for future treatment
decision is not trivial.44,45,47 Abrantes et al45 proposed
and evaluated different strategies to handle IOV in
Bayesian forecasting: estimation of the dose and the
individual parameters with the original P model con-
taining both IIV and IOV vs dose predicted neglecting
IOV but employing individual parameters computed
with IIV and IOV or ignoring IOV, with a new IIV
calculated as the square root of the sumof the variances
of the original IIV and IOV or reestimated from the
original data set neglecting the IOV term. This simu-
lation study showed that the best approach for model-
based TDM is to include IOV in parameter estimations
while neglecting it to calculate the next occasion dose,
even when a unique measurement is considered for
MIPD. It also pointed out that the proposed strategies
perform similarly when IOV is lower than IIV, and the
reestimation of the IIV, possible only if the original data
are available, might be a valuable alternative in case of
multiple occasions. These findings are also supported
by the work of Wicha and Hennig.47 Recently, Keutzer
and Simonsson48 confirmed that MIPD for drugs with
high IOV allows for appropriate dosing individual-
ization when this type of variability is included in
the parameter estimation but not in dose forecasting.
Of note, several of the existing MIPD software tools
based on P approaches integrate IOV for future dose
computation.46

Questions on the NP Methods
Could you please comment on the ability of NP methods
to distinguish covariates? In my experience, NP methods
yield robust parameter estimates such that very few
covariates ever improve the model compared to using
SAEM or FOCEI. Is this an expectation given that one is
more exact than the other?
NP methods can distinguish covariate effects just as P
methods can.However, in our experience, we found that
covariates are often less relevant in NP models than in
P models. A first reason may be related to covariance.
As explained above, NP methods always estimate the
entire joint distribution of popPK parameters, which
maximizes the likelihood. Parameter covariances are
not optimized to be minimal but are derived from
the maximally likely parameter distribution. Therefore,
covariates that are modeled as variance descriptors
may be more frequently identified with P models in
an attempt to minimize the covariance in random
effects, that is, by allowing for explained variability in
the fixed parameters through covariate relationships.
Quite often, P models include parameters with only
fixed effect and no random effect (eg, volume or in-
tercompartmental clearance). This is likely to increase
the chance to identify significant covariates to reduce

variance in the remaining random parameters. The
underlying distributional assumptions might further
increase the ease of testing the effects of covariates, with
a recognized risk of including some clinically futile co-
variates (overfitting resulting frommultiple testing) that
a Pmodeler shouldminimize by an a priori screening of
biologically relevant factors as well as a postprocessing
investigation of covariate pertinence. All this seems
to be less common in the NP community, probably
due to both cultural and technical factors. NP models
used for simulation may be more likely to include
covariates to introduce appropriate variability or strata
in the simulated population(s). NP models used for
estimation of individual patient exposures, particularly
for MIPD, tend to have fewer covariates because the
regions of the model parameter space are amplified as
necessary given the patient’s data, without being “held
back” by a centralized probability weighting of most P
distributions, for example, normal. However, to the best
of our knowledge, this perceived difference has not been
formally evaluated.

Another feature that is not described is modeler time.
The time that it takes to run large data sets with multiple
covariates with NPAG is not as efficient as SAEM. To
get similar levels of efficiency, what hardware needs are
necessary? Are we there yet,or is this for institutions with
high computing cores?
There has been no recent comparison of running times
between SAEM and NPAG, and this would be of
interest. However, there is no need for supercomputers
to run NP algorithms anymore. This time is over. There
have been large gains in speed with the replacement of
NPEM by NPAG. In addition, NPAG in Pmetrics can
be parallelized in multicore computers. It can be run on
personal machines for the most common applications
in PK. For large models, in our experience, we can
converge models with differential equations, 5 outputs,
25 parameters, and 16 subjects in a single day. The
time spent onmodeling depends little on the population
method, but rather on the quality of data and the
complexity of the model.

Since initial conditions are so important/influential on final
parameter estimates,when dealing with evaluation of new
chemical entities, would it be better to use NPAG first
to get a better handle on initial parameter estimates, that
is, can the use of NPAG be introduced into the regular
workflow to help with this and then rely on SAEM for
covariate model building? This is going back to efficiency
considerations and integration into the current Pharma
workflow.
Decades ago, we recommended the use of a P algo-
rithm first to establish appropriate boundaries for the
NP search space.49 However, by restricting parameter
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values in NP models to physiologic values, this strat-
egy is usually not necessary. Therefore, it may be a
reasonable workflow to reverse the process and start
with the NP algorithm to define the distribution of
parameter values without a priori specifying its nature.
This could aid the modeler to identify subpopulations
and/or subjects with extreme parameter values and
visually check the assumption of Gaussian or log-
normal distribution before running a P program. Ad-
ditionally, the modeler should select a tool according
to the available data and objectives of the modeling
work. For example, one might prefer to use NPAG to
make PKmodels that will be used for Bayesian adaptive
control of drug therapy, as NP models are especially
suited for this goal.17 It may also be better to use NP
models for popPK studies in small groups of patients,
where the assumptions about normal or log-normal
distribution of random effects cannot be verified with
parametric methods. Although NP methods can es-
timate individual interoccasion variability, P methods
may be preferred when it is desirable to distinguish
population level between subjects and interoccasion PK
variability. In addition, they are especially suited for
the PK/PD analysis of count data or time-to-event
data.

In general, we believe that it would be better to
use and compare more often several methods in the
analysis of a given data set to get more robust con-
clusions about the structural and covariate models, as
those are strongly interconnected.50 A nice example has
been recently published.14 We support more systematic
comparisons of this kind.

What Are the Steps for NP Model
Building?
Model building with NP methods is not different
from that of P methods. After data formatting, model
building includes the evaluation of various structural
and residual error models. Then, covariate model-
ing is performed. The final model is selected based
on standard criteria (eg, goodness of fit, simulation-
based diagnostics, external validation if possible). In
Pmetrics, a special feature is the tuning of parameter
bounds. The user has to define the range of possible
values for each parameter before running the model.
Those bounds define the initial multidimensional grid
where the algorithm will search for population values.
The final results may vary with different bounds for
a given model. Therefore, it is important to run the
model with various parameter bounds and ensure that
the population parameter distributions lie within the
predefined bound.

How do you decide if a PK parameter is constant or is
variable in the study population? Do you start by assuming
that all the parameters have an associated IIV? How is the
issue of covariance between parameters treated by NP
methods?
By default, all parameters are assumed to be random
and to have a discrete distribution, even coefficients of
covariate/parameter relationships. However, in Pmet-
rics, it is possible to set the parameter value to a fixed
value (known population mean, zero variance) or to
a single value to be estimated (unknown population
mean, zero variance).

Covariance is not an issue for NP methods. The
distributions of each random parameter are not es-
timated separately. NP methods compute the entire
discrete joint distribution of random parameters, so a
full covariancematrix is always calculated and provided
in the results.

When fitting an NP model, is the residual (intraindividual)
variability regarded nonparametrically as well, or do NP
methods actually rely on distributional assumptions for
the residual errors no less than P methods?
In Pmetrics, the residual error model follows a special
equation based on the assay error that is described by
a polynomial equation and a multiplicative or additive
terms for extra noise to be estimated. However, it
is assumed that the residual errors are Gaussian, so
the individual weighted residuals should be normally
distributed, as for P methods.

Characterization of the variability in the population
is one of the aims of population approaches. However,
in the parametric methodology, the distribution of a
PK parameter is assumed to be a priori known, and the
associated random effect is related to the parameter IIV.
Conversely, in NPmethodology, no constraints exist on
the parameter distribution, and it is not clear how the
interindividual variabilities reported in the papers are
computed. How are they quantified?

NP methods compute the discrete joint distribution
of all model parameters, providing a grid of support
points as shown in Table 1. These parameters are all
random effects, so the variance of this distribution is
the interindividual variance. Note that it is similar, but
not numerically the same, to the variance for the IIV
term in Pmethods, unless the number of support points
in the NP model is equal to the number of subjects.
Average (mean, median) as well as variability measures
(variance, standard deviation, coefficient of variation)
are just descriptive statistics computed from the grid of
support points corresponding to the entire distribution
of individual parameters.
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When facing the empirical matrix of support points
describing the variability of PK parameters, are there ap-
proved methods to determine whether their distribution
is compatible with a given classical statistical law (eg, log-
normal, normal, gamma distributions)?
First, as shown by Davidian and Gallant,51 it is the-
oretically possible to estimate a smooth nonparamet-
ric distribution of random effects that allows testing
for normality of the parameter distribution. Similarly,
Claret and Iliadis52 used a kernel method to estimate
the nonparametric probability density function.

When the final population PK parameter distribu-
tion is discrete, as with NPAG, post hoc smoothing
is also possible with similar kernel methods.53 Then,
one can statistically assess if the obtained continuous
distribution is consistent with a given law.

What Are the Advantages of NP Over P for Bayesian
TDM?
The strengths of the NP approach in model-based
TDM have been presented in details in the article
dedicated to the NP methods.2

A first advantage comes from the use of the entire
distribution of the Bayesian posterior distribution of
PK parameters in dosage calculation, unlike P methods
that use only a single set of PK parameter values,
most often the Bayesian MAP. The BestDose program
uses the multiple-model (MM) approach, an optimal
control theory also known as stochastic control. With
this approach, the dosage calculation is based on the
optimization of a precision criterion, which cannot be
done with a MAP approach. A study has shown that
this MM method was better than the MAP approach
in reducing IIV in drug exposure and keeping patients
in the therapeutic target.54

A second advantage of NP methods for model-
based TDM is the ability to target an exposure target
interval, not only a single value. This is also due to
the use of the entire Bayesian posterior distribution
in dosage design. With a MAP Bayesian approach,
it is only possible to target a single value within a
range. Examples of exposure interval targeting have
been published elsewhere.55–57

Finally, the BestDose software features 3 different
methods of Bayesian fitting: the previously mentioned
MM, the interacting multiple model and hybrid multi-
plemodel, for anyNPPKdrugmodel. These 3methods
have been recently compared in their ability to fit past
concentrations and predict future concentrations in
real data sets.29 Each method has its strengths and
limitations. The user can try each one and select the
most appropriate for a given patient. To our knowledge,
TDM programs using P models provide only a single
method of Bayesian fitting (MAP). The hybrid MM
approach is a promising method that combines the

flexibility of MAP and the precision of the MM
method. It allows the identification of the individual
PK parameter values outside the discrete NP prior.
This is similar to the “flattened priors” that has been
more recently considered for MAP estimation with P
models.58

What Are the Tools Available for NP TDM?
To our knowledge, the BestDose software is the only
tool available for TDM that uses NP PK models. Best-
Dose is available as a stand-alone Windows version,
an R version, and a web version from www.lapk.org.
It is also embedded in the InsightRx platform for
commercial purchase, although its use in InsightRx is
experimental currently.

What are the barriers or what would be the facilitators to
widen the use of NP approaches? And why is this approach
still a minority in the landscape of pharmacometrics?
Across all fields of statistics, P approaches dominate
over NPmethods. The simplicity of summarizing a dis-
tribution with 1 or 2 parameters such as mean and vari-
ance is appealing. Equally important are the statistical
inferences possible with P analysis, such as confidence
intervals around point estimates. These characteristics
make statistical tests based on P assumptions, such as t-
tests, much more widely known than the corresponding
NP Wilcoxon rank-sum test. This same familiarity
and useful properties extend to the greater use of P
approaches in population modeling. Nevertheless, P
assumptions can often be untrue, making NP methods
important additional tools in the hands of a modeler.

Further reasons for themuch smallerNP community
are undoubtedly due to the almost exclusive use of P
approaches by the large companies in the pharmaceu-
tical industry with in-house modeling groups. It is well
known that these companies are generally highly risk
averse and unlikely to innovate, instead licensing new
technologies or compounds from ideas developed in
academic centers, or from smaller companies who have
themselves spun out of academia. Because regulators
are equally familiar with P approaches and accept them,
the companies have little incentive to explore additional
tools.

NP approaches can likely become more widespread
through 2 means: (1) education and (2) increased ease
of use to fit into existing workflows. Education, work-
shops, web-based tutorials, and publications using NP
methods can introduce new students to these methods.
For ease of use, an emphasis on universal or nearly uni-
versal data input formats will facilitate easy switching
between P and NP software tools. Finally, as previously
mentioned, at least 1 commercial precision dosing tool
by InsightRx, incorporates both NP and P options,
albeit experimental for the NP algorithm.
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Conclusion
As in statistics in general, P and NP methods are
available for population PK analysis. So far, P methods
have been more widely used, especially in drug develop-
ment, whileNPmethods have been especially developed
in software used for drug TDM and MIPD. Each
approach has its strengths and limitations that users
should have in mind. A limited number of studies have
thoroughly compared the results of both methods in
the analysis of real data. Overall, those studies showed
comparable goodness of fit and predictive performance
between P and NP models, but reported discrepancies
in parameter estimates, especially in the magnitude
of IIV. The implications of such differences in terms
of simulations results or dose suggestions remain an
area for further research. Both approaches are equally
suitable for the various applications of population PK.
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